Part II

Bernhard E. Boser University of California, Berkeley <u>boser@eecs.berkeley.edu</u>

Implementation Issues

· Biasing Layout . Tuter fer en ce and fectures · Practical OTA . Mos swittches . Madding, Officel · Precision Techniques

Biasing

Bernhard E. Boser University of California, Berkeley <u>boser@eecs.berkeley.edu</u>

Transistor Biasing

F=2

- Design Parameter
 - g_m , V^* , f_T
- Layout Parameter
 - *W*, *L*
 - Fingers F
 - Multiplicity M

Example

Operating Point Analysis

```
Instance: M1 of nmos3
    Model: nfet.4
Primitive: bsim3v3
       d : V(v ds) = 523.447 mV
       g : V(v gs) = 523.447 mV
       s : val(0) = 0
       b : val(0) = 0
    type = n
  region = sat
reversed = no
     ids = 60.037 uA
    isub = 41.0222 aA
     vqs = 523.447 mV
     vds = 523.447 mV
     vbs = 0 V
     vqb = 523.447 mV
     vdb = 523.447 mV
     vqd = 1.32916 pV
     vth = 502.512 \text{ mV}
   vdsat = 78.9438 mV
  vfbeff = -1.00379 V
      qm = 1.00019 mS
     gds = 18.5458 uS
    gmbs = 283.567 uS
        . . .
```

Check operating point and beware of shifts during large transients!

Current Sources

Bernhard E. Boser University of California, Berkeley <u>boser@eecs.berkeley.edu</u>

Current Source Realization: Mirror

Choices for I_{ref} : resistor, bandgap, constant g_m reference, ...

Cascode Bias

- Choose $W_5 \cong {}^{W_1}/_3$ such that $V_{DS1} \cong V_1^* + 50 \text{mV}$ (use lookup)
- Note: ok for cascodes to have different W/L
- Insensitive to body-effect

Bias Network Power Dissipation

Minimize:

- Share bias network between several amplifiers
- Ratio mirror

Noise

Bernhard E. Boser University of California, Berkeley <u>boser@eecs.berkeley.edu</u>

Noise

Low Noise Current Source

Class of Operation

Class A ← focus in this course

- Constant bias current runs continuously (e.g. even without signal)
- (Nominally) constant g_m , pole frequencies
- Poor power efficiency
- Class B
 - Bias current matches signal amplitude
 - No current when signal amplitude is zero
 - Usually high distortion
- Class AB
 - Class B with (small) quiescent current continuously running
 - Reduced distortion (compared to class B)
 - Used in output stages and buffers
- Class D
 - PWM "digital" output
 - Very high power efficiency
 - E.g. audio amplifiers